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Abstract

Nearly all spatial reasoning problems involve

uncertainty of one sort or another. Uncertainty
arises due to the inaccuracies of sensors used

in measuring distuces and angles. We refer to
this ,,1, directional uncertainty. Uncertainty also

arises in combining spatial information when
one location is mistakenly identified with an-

other. We refer to this as recognition uncer-

tainty. Most problems in constructing spatial

representations (maps) for the purpose of navi-

gation involve both directional and recognition

uncertainty. In this paper, we show that a par-

ticulaz class of spatial reasoning problems in-

volving the construction of representations of

large-scale space can be solved efficiently even
in the presence of directional and recognition
uncertainty. We pay particular attention to the

problems that arise due to recognition uncer-

tainty. The results described in this paper are

applicable to the construction of global maps
from satellite data as well as the construction

of local navigation map4 from measurements

made by a rover in exploring a planetary sur-
face.

1 Introduction

A rasp is a model of large-scale space used for pur-

poses of navigation. Map leae'ain9 involves exploring

the environment, making observations, and then us-

ing the observations to construct a map. The con-

struction of useful maps is complicated by the fact

that observations involving the position, orientation,

and identification of spatially remote objects are in-

variably error prone. Most studies in map learning

have made the simplifying assumption that preyS-
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ously encountered locations can be identified with

certainty. In this paper, we consider what happens

when you relax that assumption.

In general, local uncertainty accumulates as the

product of the distance in generating globs] esti-
mates. One way to avoid this sort of accumulation is

to establish strategies such that a robot can discern

properties of its environment with certainty. Most

existing map learning schemes exploit this sort of cer-

talnty in one way or another. The rehearsal strategies

of Kuipers [Kuipers and Byun, 1988] axe one example

of how a robot might plan to eliminate uncertainty.

In situations in which it is not possible to eliminate

local uncertainty completely, it is still possible to

reduce the effects of accumulated errors to accept-

able levels by performing repeated experiments. To

support this claim, we describe a map-learning tech-

nique based on Valiant's probably approffiimately cor-

rect learning model [Valiant, 1984] that, given small

6 > 0, constructs a map to answer global queries such

that the answer provided in response to any given

query is correct with probability 1 - 6.

2 Spatial Modeling

We model the world, for the purposes of studying

map learning, as a graph with labels on the edges

at each vertex. In practice, a graph will be in-

duced from a set of measurements by identifying a

set of distinctive locations in the world, and by not-

ing their connectivity. For example, we might model

a city by considering intersections of streets to be

distinguished locations, and this will induce a grid-

like graph. Kuipers [Kuipers and Byun, 1988] de-

velops a mapping based on locations distinguished

by sensed features like those found in buildings, and

Levitt [Levitt et al., 1987] develops a mapping based

on locations in the world distinguished by the visibil-

ity of landmarks at a distance. In general, different

mappings result in graphs with different characteris-

tics, but there are some properties common to most



mappings. For example, if the mapping is built for

the purpose of navigating on a surface, the graph in-

duced will almost certainly be planar and cyclic. In

what follows, we will always assume that the graphs
induced are connected, undirected, and of bounded

degree; any other properties will be explicitly noted.
Following [Aleliunas etal., 1979], a graph model

consists of a graph, G = (V, E), a set £ of labels, and

a labeling, _ : (g x E} --* L, where we may assume

that L has a null element _L which is the label of any

pair (v E V, e E E) where • is not an edge from v.
We will frequently use the word direction to refer to

an edge and its associated label from a given vertex.

With this notation, we can describe a path in the

graph as a sequence of labels indicating the edges to
be taken at each vertex.

If the graph is a regular tessellation, we may as-

sums that the labeling of the edges at each vertex is

consistent, i.e., there is a global scheme for labeling
the edges and the labels conform to this scheme at

every vertex. For example, in a grid tessellation, it

is natural to label the edges at each vertex as North,
South, East, and West. In general, we do not require
a labeling scheme that is globally consistent. You

can think of the labels on edges emanating from a
given vertex as local directions. Such local directions

might correspond to the robot having a compass that

is locally consistent but globally inaccurate, or local
directions might correspond to locally distinctive fea-

tures visible from intersections in learning the map of
a city.

In the following, we identify two sources of un-

certainty in map learning. First, there may be un-
certainty in the movement of the robot. In partic-

ular, the robot may occasionally move in an unin-
tended direction. We refer to this as directional un-

certainty, and we model this type of uncertainty by
introducing a probabilistic movement function from

{g x L) --, V. The intuition behind this function

is that for any location, one may specify a desired

edge to traverse, and the function gives the location

reached when the move is executed. For example, if
G is a grid with the labeling given above, and we amo-

ciate the vertices of G with points (i, j) in the plane,
we might define a movement function as follows:

(i,j+l)

(i + 1, j)

¢(i, j, 0 = (i - 1,j)
(i,j - 1)

70% if I is North
10% if I is North

10% if l is North

10% if I is North

where the "..." indicate the distribution governing
movement in the other three directions. The proba-
bUities associated with each direction sum to 1. In

this paper, we will assume that movement in the in-

tended direction takes place with probability better
than chance.

A second source of uncertainty involves recognis-
ing locations that have been seen before. The robot's

sensors have some error, and this can cause error in

the recognition of places previously visited; the robot

might either fail to recognise some previously visited

location, or it might err by mistaking some new lo-

cation for one seen in the past. We refer to this type
of uncertainty as ree.ognigion uncertainty, and model

it by partitioning tile set of vertices into equivalence
classes. We assume that the robot is unable to dis-

tinguish between elements of a given class using only
its sensors.

3 Map Learning

For our purposes, a map is a data structure that

facilitates queries concerning connectivity, both lo-

cal and global. Answers to queries involving global
connectivity will generally rely on information con-

cerning local connectivity, and hence we regard the
fundamental unit of information to be a connection

between two nearby locations (i.e., an edge between

two vertices in the induced undirected graph). We
say that a graph has been learned completely if for

every location we know all of its neighbors and the

directions in which they lie (i.e., we know every triple
of the form (u, 1, v) where u and n are vertices and 1

is the label at u of an edge in G from _ to n).
We assume that the information used to con-

struct the map will come from exploring the envi-

ronment, and we identify two different procedures
involved in learning maps: ezploeation and _limila.

lion. Exploration involves moving about in the world
gathering information, and assimilation involves us-

ing that information to construct a useful representa-

tion of space. Exploration and assimilation are gener-
ally handled in parallel, with assimilation performed
incrementally as new information becomes available

during exploration.
The problem that we are concerned with in this

paper involves both recognition and directional un-

certainty with general undirected graphs. In the fol-
lowing, we show that a form of VaUant's probably

approximately correct learning is possible when ap-
plied to learning maps under these conditions.

At any point in time, the r,,bot is facing in

a direction defined by the label of a particular
edge/vertex pair--the vertex being the location of the

robot and the edge being one of the edges emanating
from that vertex. We assume that the robot can turn

to face in the direction of any of the edges emanat-
ing from the robot's location. Directional uncertainty
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ariseswhentherobotattemptsto movein the direc-

tion it is pointing. Let ot > 0.5 be the probability
that the robot moves in the direction it is currently

pointing. More than 50% of the time, the robot ends

up at the other end of the edge defining its current
direction, but some percentage of the time it ends up
at the other end of some other edge emanating from

its starting vertex.
To model recognition uncertainty, we assume

that the vertices g are partitioned into two sets, the

distinguishable vertices D and the indistinguishable
vertices 1. We are able to distinguish only vertices

in D. We refer to the vertices in D as landmarks

and to the graph as a landmark graph. We define the
landmark d/stribution parameter, r, to be the max-

imum distance from any vertex in I to its nearest

landmark (if r = 0, then I is empty and all vertices

are landmarks). We say that a procedure learns the
local connectivity within radi_s r of some v E D if

it can provide the shortest path between v and any
other vertex in D within a radius r of v. We say that

a procedure learns the global connectivity of a graph
G within a constant/actor if, for any two vertices u

and v in D, it can provide a path between u and v

whose length is within a constant factor of the length
of the shortest path between u and v in G.

In the following, we assume that the probability

of the robot guessing that it did traverse a path p

given that it actually did traverse p is % that "f > ½+e
where e is positive, and that the robot knows these
two facts. The answers to these guesses might be

arrived at by various means. First, some monitoring
of the robot's movement mechanisms could provide

an indication of the quality of the traversai. Any a

priori information about the path could be used to
provide the answer, and some information regarding
features seen in the previous exploration steps might

be useful here as well.

We begin by showing that the multiplicative er-
ror incurred in trying to answer global path queries

can be kept low if the local error can be kept low,
that the transition from a local uncertainty measure

to a global uncertainty measure does not increase the

complexity by more than a polynomial factor, and
that it is possible to build a procedure that directs

exploration and map building so as to answer global

path queries that are accurate and within a small
constant factor of optimal with high probability.

Lemma 1 Let G be a landmark graph with distri-

bution parameter r, and let c be some integer > 2.

Given a procedure that, for any 6t > O, learns the
local connectivity within cr o/ any landmark in G in

time polynomial in _, with probability 1 - 6t, there
is a procedure that learns the global connectivity of G

with probabilitl/ 1 - 6 s for any 6e > 0 in time poly-

nomial in _, and the size of the graph. Any global

path returned as a result will be at most _-2c times

the length of the optimal path.

Proof sketch: Let m be the length of the longest

answer we might have to provide to a global query.

Then the probability of correctness for any global an-

swer obeys

p(correct answer) _ (1 - 6l) m

A simple expansion gives

(1 - 6_)"_ = 1 - m6t + E _> 1 - m61

because E >_ 0. Thus, ensuring that every 6t = 6#/m

will ensure that

p(correct answer) >_ 1 - 6g

We use the local procedure on every distinguishable

vertex in the graph and the resulting representation
is sufficient to provide a path between any two dis-

tinguishable vertices. Note that we do not have to
know I¢1 in order to calculate 61, only the length of

the longest answer expected. The proof that the re-

suiting paths are within a constant factor of optimal

appears in [?].

Lemma 2 There ezists a procedure that, for anl

6l > O, learns the local connectivity within cr of a

verier in any landmark graph with probabilitll 1 - 6z

in time polllnomial in _, _ and the size of G, and

szponential in r.

Proof sketch: The learning algorithm can be bro-

ken down into three steps: a landmark identification

step in which the robot finds and identifies a set of
landmarks, a candidate selection step in which the
robot finds a set of candidates for paths in G con-

necting landmarks, and a candidate filtering step in
which the robot determines which of those candidates

actually correspond to paths in G. In order to prove
the lemma, landmark identification has to succeed in

identifying all landmarks in G with high probability,
candidate selection has to find all paths (or at least

all of the shortest paths) between landmarks with

high probability, and candidate filtering has to de-
termine which of the candidates correspond to paths

in G with high probablity. Let 1 - 6i, 1 - 6s, and

1 -61 correspond, respectively, to the probabilities
that the three steps succeed in performing their asso-
ciated tasks. We will consider each of the three steps

in turn.
The first step is easy. The robot identifies all the

landmarks in G with probability 1 - 6i by making a
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random walk whose length is polynomial in _ and the
size of G. A more sophisticated exploration might be

possible, but a random walk suffices for polynomial-

time performance.

Having identified a set of landmarks, the robot

has to try all paths of length r or less starting from

each identified landmark. If d is the maximum degree
of any vertex in G, then there can be as many as d"

paths of length r or less starting from any vertex in
G. This requires than an exhaustive search will be

exponential in r. Since we expect that r will generally

be small, this "local" exponential factor should not

be critical. For each landmark, the robot tries some

number of paths of length r trying to connect other

landmarks within a radius r. Again, a simple coin-
flipping algorithm will do for our purposes. Starting

from a landmark A, the robot chooses randomly some
direction to follow, it records that direction, and then

attempts to follow that direction. It continues in this

manner until it has taken r steps. If it encounters one

or more landmarks (other than A), then it records the
set of directions attempted as a candidate path. The

resulting candidates look like:

Aouto, in,Xout_, ..., in.__Xout.__, in. B

where B is the landmark observed on a path starting

from A, and the notation inXout indicates that the
robot observed itself entering a vertex of type X on

the arc labeled in and it observed itself attempting
to leave on the arc labeled out. The probability that

the robot will traverse a particular path of'length r

on any given attempt is 1_-.. The probability that
the robot will traverse the path of length r that it

attempts to traverse is a'. Since the robot records

only those paths it attempts, it has to make enough
attempts so that with high probability it records all

the paths. The probability that the robot will record

any given r-length path on n attempts starting at A
is:

In order to ensure that we record all such paths with

probability 1 - 6j we have to ensure that:

1 ,<b '
Solving for n we see that the robot will have to make a

number of attempts polynomialin _. and exponential
in r.

Candidate filtering now proceeds as follows for

each candidate path. The robot attempts to traverse

the path, and, if it succeeds, it guesses whether or not
it did so correctly. A traversai of the path that was

correctindicatesthat the path reallyisin O. With

directionaluncertainty,itispossiblethat although

the traversalstartedand ended at the rightlocations

and seemed to take the rightdirectionat each step,

the path actuallytraversedisnot the one that was

attempted. This resultsin a _faisepositive"obser-

vationfor the path inquestion.The purpose of the

guessaftera traversaiistodistinguishfalsepositives

from correcttraversals.For each traversaithat suc-

ceeds,we recordtheanswer tothe guess,and we keep

trackofthe number ofpositiveand negativeanswers.

ARer 9 traversalsand guesses,ifthe path reallyisin

G, we expect the number of positiveanswers to be

near n7. We use n/2 as the threshold,and include

only paths with more than 9/2 positiveanswers in

our representation.By making 9 sufficientlylarge,

we can assurethat thisfilteringacceptsalland only

realpaths with the desiredprobability,1 -6!. We

now considerthe relationbetween 9 and 6/.

The entirefilteringstep willsucceedwith global

probabilityI-61 ifwe ensurethat each path iscor-

rectlyfilteredwith some localprobability,which we

willcall6!t.An argument similarto the one used in

the proofof Lemma I shows that the localprobabil-

ityispolynomial in the globalprobability,61,d,and

the siseof G, and exponentialin r. We now show

that the number oftraversals,n, ispolynomial in

and _----_.

As mentioned above, in n traversals we expect
about 97 positive answers if the path is really in G,

We use ,/2 as a threshold, and we wish to ensure that

this includes all and only real paths. We therefore

consider the probability that we will get 9/2 or fewer
positive responses even though the path is really in G.

This case covers the possibility of wrongly including a

path; the analysis covering wrongly excluding a path
is similar. We assume that the number of positive

responses will be normally distributed about a mean
of 97 if the path is real. The probability of making an

error is the probability that the number of positive

answers will deviate from this mean enough to fall

below 9/2. If X is the number of positive responses

we get, then

V(e,','o,') < V(lX - 97l < 9(7 - 1)) <
7(1 7)

- - - 9(7- ½p

Replacing 7(I - 7) with ¼, we have

1
P(e,','o,')<_

9(27- 1)

which will be less than 6!_ provided that

1 1
n>

- 61, (27- 1)2
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Theorem 1 It is possible to learn the global connec-

tivity of any landmark grapK with probability 1 - 5 in

time polynomial in _, Y_T, and the size of G, and
ezponential in r.

Theorem 1 is a simple consequence of Lemma 1

and 2. It has an immediate application to the prob-

lem of learning the global connectivity of a graph
where all the vertices are landmarks. In this case,

the parameter r = 0, and we need only explore paths

of length 1 in order to establish the global connectiv-

ity of the graph.

Corollary 1 It is possible to learn the connectivity

of a graph G with only distinguishable location_ vJith

probability 1 - 5 in time polynomial in _, ._L-l_2a,and

the size of G.

4 Discussion

The proof in the previous section relies on the as-

sumption that the robot knows it can identify the
correct execution of a set of instructions specifying

a path with probability better than "V-Knowing the
value of ? enables the robot to determine how many

experiments it must perform in order to construct a

map that is correct with probability 1 - 6. The intu-
ition behind this is that, in generating each candidate

path in the initial exploration phase, the robot also

compiles a set of observations (e.g., local features,
distances traveled, and angles turned) to be used as

expectations during the candidate filtering step. The

expectations are used to rule out situations in which
the robot fails to correctly execute the instructions

in the candidate path.
We have also considered the case in which move-

ment in the intended direction takes place with prob-

ability better than chance, and that, upon entering a
vertex, the robot knows with certainty the local name

of the edge upon which it entered. We call the latter

ability reverse movement certainty. In traversing an

edge the robot will not know that it has ended up
at some unintended location, but it will know what

direction to follow in trying to return to its previous

location.
With the assumption of reverse movement cer-

tainty, we have additional information that we can

bring to bear on distinguishing successes from fail-
ures. As mentioned earlier, in the initial exploration

phase, the robot generates a set of candidate paths
from observations, where each candidate is of the

form:

p = Aouto, in,Xout,, ''' , in___Xou_h__, in_ B"

Given reverse movement certainty, the set of direc-

tions indicated by the labels inh,in_-1,...,inl are

guaranteed to describe a path from B to A in G.
What we have to determine is whether or not the set
of directions outo, out1,..., out,_1 describe a path

from A to B in G.
To make this determination, the robot runs a set

of experiments. In each experiment, the robot tries to
follow the directions indicated by ink, in__D..., in1,

and it keeps track of the number of hits:, exper-
iments in which it observes the sequence of labels

outk-1, outb-2,. •., outo on entering vertices. If p is

a path, then in n experiments the expected number
of hits is a_n. If p is not a path, then the expected

number of hits is ad-l(1-a)n or less depending upon

how many movement errors were made in the orig-
inal traversal. It is this separation between a d and

ad-l(1 - a) that we exploit in determining whether
or not a candidate path is actually a path in G.

Given the notion of global connectivity defined

above, no attempt is made to completely /earn the

graph (i.e., to recover the structure of the entire
graph). It is assumed that the indistinguishable ver-
tices are of interest only in so far as they provide di-

rections necessary to traverse a direct path between
two landmarks. But it is easy to imagine situations

where the indistinguishable vertices and the paths

between them are of interest. For instance, the in-

distinguishable vertices might be partitioned further

into equivalence classes so that one could uniquely

designate a vertex by specifying its equivalence class
and some radius from a particular global landmark

(e.0., the bookstore just across the street from the
Chrysler building). In [?], we show how our approach
can be applied to completely learn the graph by first

completely learning local neighborhoods of each land-

mark.

5 Related Work

Kuipers defines the notion of "place" in terms of a set
of related visual events [Kuipers, 1978]. This notion

provides a basis for inducing graphs from measure-
ments. In Kuipers' framework [Kuipers and Byun,

1988], locations are arranged in an unrestricted pla-

nar graph. There is recognition uncertainty, but
there is no directional uncertainty (if a robot tries

to traverse a particular hall, then it will actually tra-
verse that hall; it may not be able to measure exactly

how long the hail is, but it will not mistakenly move

down the wrong hall). Kuipers goes to some length
to deal with recognition uncertainty. To ensure cor-

rectness, he has to assume that there is some refer-
ence location that is distinguishable from all other

locations. Since there is no directional uncertainty,

any two locations can be distinguished by traversing

paths to the reference location. Given a procedure
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thatisguaranteed to uniquely identify a location if it

succeeds, and succeeds with high probability, we can

show that a Kuipers-style map can be reliably prob-

ably almost always usefully learned using an analysis
similar to that of Section 3. In fact, we do not re-

quire that the edges emanating from each vertex be

labeled, just that they are cyclically ordered.

Levitt et al [Levitt etal., 1987] describe an ap-
proach to spatial reaaoning that avoids multiplicative

error by introducing local coordinate systems baaed

on landmarks. Landmarks correspond to environ-
mental features that can be acquired and, more im-

portantly, reacquired in exploring the environment.

Given that landmarks can be uniquely identified, one
can induce a graph whose vertices correspond to re-

gions of space defined by the landmarks visible in

that region. The resulting problem involves neither

recognition nor movement uncertainty. Our results
bear directly on any extension of Levitt's work that

involves either recognition or movement uncertainty.
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